Terrain Geomorphing in the Vertex Shader

نویسنده

  • Daniel Wagner
چکیده

Terrain rendering has heretofore been computed by a CPU and rendered by a combination of CPU and GPU. It is possible to implement a fast terrain renderer which works optimally with current 3D hardware. This is done by using geo-mipmapping which splits the terrain into a set of smaller meshes called patches. Each patch is triangulated view-dependently into one single triangle strip. Special care is taken to avoid gaps and t-vertices between neighboring patches. An arbitrary number of textures can be applied to the terrain which are combined using multiple alpha-blended rendering passes. Since the terrain’s triangulation changes over time, vertex normals cannot be used for lighting. Instead a pre-calculated lightmap is used. In order to reduce popping when a patch switches between two tessellation levels geo-morphing is implemented. As will be pointed out later, this splitting of the terrain into small patches allows some very helpful optimizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Per-pixel Rendering of Terrain Data

This paper presents a novel approach to terrain rendering, which mostly relies on GPU/shader rather than CPU. The most popular representation for terrain data is uniformly sampled height field. As the height field is stored as a texture map, it is directly accessible by a pixel shader. The pixel shader uses a ray casting algorithm, and the CPU and the vertex shader provide ray information to be...

متن کامل

Progressive Buffers: View-dependent Geometry and Texture LOD Rendering

We introduce a view-dependent level of detail rendering system designed with modern GPU architectures in mind. Our approach keeps the data in static buffers and geomorphs between different LODs using per-vertex weights for seamless transition. Our method is the first out-of-core system to support texture mapping, including a mechanism for texture LOD. This approach completely avoids LOD pops an...

متن کامل

Real-time Multiresolution Rendering for Dynamic Terrain

This paper presents a novel dynamic terrain multiresolution rendering method by utilizing the capabilities of current generation GPUs. Firstly, the terrain depth offset map texture that represents the appropriate offset values is generated through rendering to texture, which is used to deform terrain in vertex shader. Then in order to accurately represent the fine terrain detail created by defo...

متن کامل

Hexagonal Geometry Clipmaps for Spherical Terrain Rendering

Terrains can be rendered efficiently with rectangular 2D grid of heights. Terrain on spheres, on the other hand, can be rendered using Hierarchical Triangular Mesh (HTM) but the representation does not fit directly with 2D grid of heights. We present a unified representation of HTM and clipmapping using Hexagonal Geometry Clipmaps. This provides one to one correspondence of vertices and heights...

متن کامل

Real-time tessellation of terrain on graphics hardware

Synthetic terrain is a key element in many applications that can lessen the sense of realism if it is not handled correctly. We propose a new technique for visualizing terrain surfaces by tessellating them on the GPU. The presented algorithm introduces a new adaptive tessellation scheme for managing the level of detail of the terrain mesh, avoiding the appearance of t-vertices that can produce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004